
Mapping the Modern
Security Terrain

APPLICATION SECURIT Y

http://www.mossadams.com

02 I NTRO D U CTI O N

02 I D E NTI F YI N G AN D AD D R ES S I N G
VU LN E R AB I LITI ES

03 Application Security Programs

03 Identifying Risks

04 Custom Threat Modeling

04 Establishing a Baseline

04 YO U R O PTI O N S

04 Types of Assessments

04 Frequently Missed Vulnerabilities

05 Dynamic Application Security Testing

05 Static Analysis Security Testing

06 Penetration Testing

06 Security Code Review

07 Hybrid Approaches

07 N E XT STE PS

07 Software Composition Analysis

08 Runtime Protection

08 Developer Training and Analysis

08 CO N C LU S I O N

08 We’re Here to Help

CONTENTS

The material appearing in this presentation is for informational purposes only and should not be construed as advice of any kind, including, without limitation, legal, accounting, or investment
advice. This information is not intended to create, and receipt does not constitute, a legal relationship, including, but not limited to, an accountant-client relationship. Although this
information may have been prepared by professionals, it should not be used as a substitute for professional services. If legal, accounting, investment, or other professional advice is required,
the services of a professional should be sought.

IDENTIFYING AND ADDRESSING VULNERABILITIES
Programming languages, operating systems, and network
protocols were never designed to be inherently secure. After
their initial specification by the Department of Defense, the
internet protocols we’ve come to take for granted were
developed in the relatively benign and permissive environment
of research institutions and university collaboration during
the 1970s. Widespread realization of security issues lagged
significantly behind public and commercial adoption of the
network in the 1990s.

Once the network-level security problem was recognized,
perimeter security appliances such as firewalls and intrusion
detection devices were brought into service. By the turn of
the new century, network level security had become a well
understood problem.

With the advent of web and other internet-enabled applications,
threat actors realized the application layer had very little
security, and could be used to effectively bypass network
layer protections. Internet applications became the most
common target for criminals attempting to obtain proprietary
information, restricted customer data, and access to protected
assets and accounts.

Now in 2019, it’s necessary to secure not only traditional web
applications, but also web application programming interfaces,
mobile devices, microservice architectures, and internet-
enabled appliances.

Selecting the right combination of application security risk
management solutions requires taking business requirements
and unique factors into account. There’s no single approach that
will fit every organization’s needs.

INTRODUCTION

02MOSS ADAMS Mapping the Modern Security Terrain

Application Security Programs

Historically, software development was a slow and
methodical process. All functional requirements were
specified up front and frozen by the time implementation
began. While this waterfall approach had many problems,
it had the distinct advantage of allowing ample time for
careful security evaluation prior to placing an application
in production.

Modern development life cycles are agile; their
development happens in short sprints. In recent years,
pace has accelerated even further with the widespread
adoption of DevOps where software development and
operations are integrated. This coupling relies heavily on
automation and having operations personnel on the same
team as the developers to achieve a rapid deployment life
cycle. In some cases, there can be multiple live application
deployments in a single day.

In this fast-paced application development and deployment
environment, it can be challenging to implement an
effective program that’s compatible with the software
development life cycle (SDLC). There’s little room for
traditional security evaluations, relying instead on trained
developers who avoid introducing security flaws in the first
place, along with lightweight tools to give them instant
feedback if they inadvertently create one.

Reasonable Safety

While absolute security is the goal, it’s usually necessary
to make tradeoffs to harmonize with target deployment
schedules and business goals. If there isn’t an adequate
security program already in place, making these tradeoffs
requires a careful analysis and assessment of the current
baseline.

An application that handles banking transactions or deals
with a customer’s personally identifiable information
requires a higher level of scrutiny and lower level of risk

tolerance than a blog. However, even a blogging site
can interact with an organization’s other applications in
unforeseen and damaging ways.

EXAMPLE

For example, if the database hosting the blog is
compromised and an attacker is able to execute certain
procedures, they may be able to obtain a command
shell on the internal network, facilitating an assault
on a sensitive financial database or application hosted
elsewhere on the infrastructure. Alternately, a cross-site
scripting vulnerability on that same blog could be used
to exploit a user’s trust in the organization’s domain,
leading them to give up credentials that could compromise
their accounts on the financial site. A holistic view of the
organization is required to establish a true baseline.

A reasonable level of safety varies depending on the
context of a specific application and organization. The
definition may be based upon government, such as defense
classification levels, industry-group or business-domain
requirements, regulatory requirements, and sometimes
just plain old common sense.

Identifying Risks

A useful resource for understanding both web application
and mobile application security risks is the Open Web
Application Security Project (OWASP). With hundreds
of articles defining common application security flaws and
offering useful remediation advice, OWASP also publishes
an annual list of the top 10 most critical web and mobile
application vulnerabilities.

While these lists are very useful for increased security
awareness, they aren’t intended to be comprehensive.
The OWASP lists could be considered a prototype threat
model for many applications and make a great starting
point, but customization will usually pay dividends.

03MOSS ADAMS Mapping the Modern Security Terrain

http://www.owasp.org/
http://www.owasp.org/

Custom Threat Modeling

Each application has specific, unique security concerns,
and a generic list won’t always work. While the OWASP list
is a useful starting point, threat modeling—a technique
used to identify specific threats an application must be
ready to face—can help identify the specific threats that
pertain to your application, and eliminate those that
don’t apply.

There are a variety of tools on the market that can assist
with the development of a custom threat model. Some are
paid commercial products offering a wide variety of useful
features and reporting capabilities, but there are also
free, proprietary, and open-source threat modeling tools
available.

Establishing a Baseline

Developing a threat model could be an adequate first step
for a start-up, because the model can illuminate which
security threats require immediate attention and which
can be safely ignored. However, an established enterprise
will probably require a deeper assessment of their up and
running applications to establish a starting point, even if
they intend to move to more automated and lightweight
methods going forward.

This deep assessment should include the use of a
commercial-grade source code static analysis tool and
an element of manual analysis by a trained engineer, a
process often referred to as a business logic assessment
(BLA).

YOUR OPTIONS

Types of Assessments

There are a number of approaches to testing application
security that involve a combination of automated and
manual analysis.

Some are strictly external tests, sometimes referred to
as black box, because the evaluator has no insight into
the application’s internal architecture, configuration, or

source code. Other types of tests are internal, or white
box, and important information is made available to the
tester. Often, these techniques are combined, sometimes
called grey box testing.

Frequently Missed Vulnerabilities

Strictly automated testing is faster and less expensive,
but there are some important vulnerabilities that an
automated evaluation struggles to identify and could miss.

• Sensitive data that isn’t being encrypted, such as
hardcoded passwords

• Third-party services operating without proper
protection

• Flaws in the entitlement check mechanism that
may allow access to a user’s data by another
unauthorized user

• Authentication logic flaws

• Authorization logic flaws

• Disclosure of confidential data

• Inadequate audit logging

• Susceptibility to cross-site request forgery

• Presence of application back doors

This is why augmenting the automation tools with manual
inspection, such as a BLA, is an important step.

On the other hand, automated tools are adept at
detecting some flaws, at least for most common
application architectures.

These could include the following:

• Missing entries in an xml configuration file

• Dangerous functions, including unvalidated user input
data in webpage output, also known as a cross-site
scripting vulnerability

• Unvalidated input data in the construction of a
database query, also known as a structured query
language (SQL) injection

04MOSS ADAMS Mapping the Modern Security Terrain

Dynamic Application Security Testing

Dynamic application security testing (DAST) is a black box
scanning method that interacts with a running application
and essentially treats it as a black box to identify points of
vulnerability.

VALUE

The application is attacked under realistic conditions, so
the identified vulnerabilities are concrete and compelling.
If the scanning tool can present evidence of an exploitable
cross-site scripting vulnerability, it’s difficult to claim that
a real attacker couldn’t do the same.

DOWNSIDES

While the value of this approach lies in its realism, it
probably won’t identify every instance of each vulnerability.
It also requires a knowledgeable engineer to filter out the
many false positives these tools produce.

Static Analysis Security Testing

Static analysis security testing (SAST) scans application
code for vulnerabilities, usually high-level application
source code. It’s considered a white box assessment,
because nothing is hidden from the tool. Application
code is a larger and richer analysis target than the user
interface addressed by DAST scanning, which means a
broader range of vulnerabilities can be identified.

The best static analysis tools utilize sophisticated
compiler technologies, such as data flow analysis, control
flow analysis, and pattern recognition to identify security
vulnerabilities. The results of automated analysis still
include a high number of false positives, requiring a
highly skilled security engineer to analyze the results to
distinguish between the true and the falsely reported
vulnerabilities.

Most static analysis tools can also identify a range of poor
programming practices, such as the use of uninitialized
variables or the lack of error handling. While some of these
examples may be found by external black box scanning,
SAST scanning has a higher probability of detecting them
and avoiding false negative findings.

VALUE

The main strength of SAST is analyzers identify potential
issues in the face of highly complex application structures
and data flows that would daunt most humans.

DOWNSIDES

With the current state of the technology, SAST isn’t
generally capable of testing algorithms, security policy
adherence, and specialized issues that may be derived
from the application’s domain and business requirements.
The main limitation of either type of automated tool is they
can only find approximately 30% of security vulnerabilities
that should be evaluated in a comprehensive security
assessment.

05MOSS ADAMS Mapping the Modern Security Terrain

Penetration Testing

Penetration testing goes a step beyond the external web
application black box scanning described above.

A penetration tester, or pentester, is a talented security
engineer with a deep knowledge of internet and web
protocols. In many cases, they also have significant coding
experience. This knowledge allows them to test both
traditional web and mobile applications, which almost
always use web protocols to communicate back to a server.

To find weaknesses in the application that the automated
tools didn’t reveal, a pentester has multiple options to
utilize:

• Specialized commercial and open-source tools

• Imagination and expertise

Penetration testing can happen in one of two ways. One
involves going deep, attempting to get as far into the
application and supporting infrastructure as possible
in the time available, which is what most people think of
when they hear the term. The other version is more like
an enhanced version of the vulnerability assessments.
Using DAST along with manual tools and techniques, the
pentester attempts to demonstrate as many vulnerable
entry points as possible in the time allotted, rather than
deeply exploiting just one or two of them.

A deep penetration test can be very revealing for the
application’s owners, even if it doesn’t cover the full
breadth of possible entry points.

For example, the results of a successful SQL injection
attack might include data or metadata accessed and
exfiltrated without authorization. If the pentester
can successfully extract a table of users and account
information from the database and present it to the
security team or systems administrators—despite the
fact that the pentester was never provided database
access—it will be painfully clear that the organization
needs to take steps to improve their application security
program.

Security Code Review

Security code review involves an assessment of application
architecture and source code by highly skilled software
security engineers.

This typically involves the use of a static analysis security
testing (SAST) automated scanning tool to supplement a
manual analysis, but as some languages aren’t supported
by these tools, this could be a 100% manual effort. As
previously discussed, the portion of this type of review
that goes above and beyond the capabilities of the SAST
tool may be considered a BLA.

A security code review could be considered a combination
of SAST and BLA. The resulting analysis is the most
reliable and comprehensive of the approaches, making it
the gold standard in industries where application security
is a crucial concern, such as financial services.

VALUE

The strength of a security code review is in the depth and
thoroughness of the assessment. The full range of security
vulnerabilities can be identified, and most if not all of the
instances of these vulnerabilities can be enumerated.

DOWNSIDES

The main drawback of this type of analysis is engineers
with the necessary skills and experience—both extensive
enterprise application development experience and deep
security knowledge—are scarce and in high demand. The
time and level of effort involved makes this approach
costlier than other options.

06MOSS ADAMS Mapping the Modern Security Terrain

Hybrid Approaches

Sometimes it’s helpful to combine techniques and use a
hybrid, or grey box, approach. These combine the best of
both worlds by using realistic external attacks combined
with the visibility of a white box audit.

EXAMPLE

One hybrid approach that has proven successful is
performing a security code review alongside a running,
testable version of the application. The engineer
conducting the review deploys both DAST and SAST
analysis tools, along with manual testing, source
inspection, and a BLA.

This creates a natural synergy, because suspicious
patterns spotted in the code can be rapidly assessed for
vulnerabilities through actual testing. Conversely, any
problematic responses observed in the DAST scanning or
manual testing can be quickly confirmed or disconfirmed
as a security issue through examination of the relevant
code.

EXAMPLE

Another hybrid approach uses interactive application
security testing (IAST) tools. These tools require creating
an instrumented version of an application through the
inclusion of various runtime libraries provided by the IAST
tool vendor. The application is then scanned externally.
When vulnerabilities are found, the included libraries allow
the tester to pin them down in the source code.

The IAST approach offers a distinct advantage by
combining automation with a reduced number of false
positive findings. This makes it a strong contender for
inclusion in the rapidly evolving, agile environment central
to DevOps.

NEXT STEPS

Software Composition Analysis

Modern applications are seldom built completely from
scratch. As applications become more interactive and
complex, developers increasingly rely on open-source or
third-party libraries to implement common functionality.

Well over half of a typical application is composed of
external code. Unfortunately, including external code
means also including any vulnerabilities within it. For
example, in 2017 Equifax utilized the very common Apache
Struts open-source library, which provides a framework
for Java web applications. Because the version Equifax
used included vulnerabilities, the company was hit by a
very large and significant application breech that included
data exposure.

Attackers are well aware that open-source code, and even
third-party proprietary code represents a potentially
successful attack vector. They spend considerable time
and effort searching these components for flaws, often
using the same tools and techniques described in this
paper.

Third-party libraries can also be problematic because
they can put an organization into legal jeopardy if used
incorrectly. Even open-source software has license
agreements which must be followed, and sometimes these
can be quite stringent in their terms.

Software composition analysis (SCA) determines what
external libraries are in use by an application, and if there
are any publically known vulnerabilities that affect them.

A secure code review process will usually identify and
report on these issues, but doing it manually can be
tedious and time consuming. Several commercial tools

07MOSS ADAMS Mapping the Modern Security Terrain

exist for this purpose, and they will let the developers
or security team know if there’s a vulnerability warning
for the library in question. They’ll also identify if it’s
exploitable in the specific usage context of an application.

SCA isn’t something that can be done once and forgotten,
because new library issues are constantly discovered and
reported. An organization must make a continuous effort
to keep up with the status of their third-party libraries.

Runtime Protection

If security issues are missed during the development and
testing process, all isn’t necessarily lost. Modern tools
make it possible to interactively detect and stop attacks
against a running application in production.

One way to do this is through a web application firewall
(WAF). A sophisticated WAF can be configured to not only
match and block likely attack patterns, but also respond
to new attack signatures through the use of advanced
heuristics and, increasingly, artificial intelligence.

Despite their namesake, these devices aren’t as
straightforward as a traditional network level perimeter
firewall, because securing the application layer isn’t as
simple as blocking or allowing access to certain ports
and services. Web applications and application program
interfaces (APIs) are varied and complex, and WAFs can’t
stop certain kinds of attacks, particularly those resistant
to automated discovery due to logical flaws.

Attackers are aware of various WAF products, and are
skilled at identifying which product is in use so they can
attempt to evade them. The use of a WAF significantly
raises the bar for the intruder, but it shouldn’t be used
as a crutch to avoid securing the applications themselves.
Eventually, an attacker will get past the WAF and the
approach will fail.

Another possible drawback to a WAF is it often incorrectly
senses legitimate user interaction patterns as attacks.
Unlike false positives produced by SAST and DAST
scanning tools, the WAF can act on this erroneous
information in the real world and cause an organization to
effectively launch a denial of service attack against itself.

WAF products have passive learning and reporting modes
in which they learn normal usage patterns. These modes
allow their configurations to be tweaked, but they’re not
really doing their jobs when deployed in this mode, which is
another reason the application itself must be secure.

A recent innovation on the WAF concept, known as
runtime application self-protection (RASP), includes
instrumentation libraries with the deployed application, a
concept discussed earlier in the context of IAST.

Unlike IAST but similar to a WAF, RASP will respond to any
attacks detected by the runtime libraries and attempt to
actively block the incoming attack. The use of this onboard
instrumentation makes attack detection more accurate,
reducing false positives and hopefully overcoming the
inadvertent denial of service that may occur with a
traditional WAF. They’re also more difficult for an attacker
to evade.

Developer Training and Environment

Adequate developer training can do more for an
organization’s application security posture than all of
the other tools and testing combined. Ideally, developers
should receive secure coding training, customized with
an accurate threat model, at the start of a project. This
training must be periodically updated and repeated to
keep it fresh in their minds. The best way to secure an
application is to not introduce security flaws in the first
place.

Even with good training, programmers aren’t infallible.
That’s why it’s important that they get rapid feedback to
fix any flaws almost immediately upon introduction, when
costs are lowest. A full static analysis scan combined with
a BLA—a security code review—may be the gold standard
for application security and the best way to establish a
baseline, but something lighter and quicker is desirable for
real time flaw detecting during the coding process.

Fortunately, such products are available both from
security vendors and open-source, and they integrate well
with popular integrated development environments (IDEs)
to allow nearly seamless integration into the toolchain.

CONCLUSION

We’re Here to Help

Each organization has unique application security needs.
For more information on charting your organization’s
application security needs, and how we can help protect
you and your stakeholders, contact your Moss Adams
professional.

mossadams.com/applicationsecurity

08MOSS ADAMS Mapping the Modern Security Terrain

https://www.mossadams.com/applicationsecurity

About Moss Adams
With more than 3,200 professionals across 25-plus
locations in the West and beyond, Moss Adams
provides the world’s most innovative companies
with specialized accounting, consulting, and wealth
management services to help them embrace
emerging opportunity. Discover how Moss Adams is
bringing more West to business.

Assurance, tax, and consulting offered through Moss Adams LLP. Investment
advisory services offered through Moss Adams Wealth Advisors LLC. Investment
banking offered through Moss Adams Capital LLC.

	TOC
	Mapping the Modern Application Security Terrain
	Application Security Programs
	Identifying Risks
	Custom Threat Modeling
	Establishing a Baseline
	Types of Assessments
	Frequently Missed Vulnerabilities
	Dynamic Application Security Testing
	Static Analysis Security Testing
	Penetration Testing
	Security Code Review
	Hybrid Approaches
	Software Composition Analysis
	Runtime Protection
	Developer Training and Environment
	We’re Here to Help

	Button 64:
	Button 1:
	Button 90:
	Button 91:
	Button 97:
	Button 98:
	Button 2:
	Button 3:
	Button 4:
	Button 5:
	Button 6:
	Button 7:
	Button 8:
	Button 9:
	Button 10:
	Button 92:
	Button 93:
	Button 94:
	Button 99:
	Button 95:
	Button 96:
	Button 65:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:

